Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Trends Analyt Chem ; 165: 117107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-2324531

RESUMEN

Molecular detection of SARS-CoV-2 in gargle and saliva complements the standard analysis of nasopharyngeal swabs (NPS) specimens. Although gargle and saliva specimens can be readily obtained non-invasively, appropriate collection and processing of gargle and saliva specimens are critical to the accuracy and sensitivity of the overall analytical method. This review highlights challenges and recent advances in the treatment of gargle and saliva samples for subsequent analysis using reverse transcription polymerase chain reaction (RT-PCR) and isothermal amplification techniques. Important considerations include appropriate collection of gargle and saliva samples, on-site inactivation of viruses in the sample, preservation of viral RNA, extraction and concentration of viral RNA, removal of substances that inhibit nucleic acid amplification reactions, and the compatibility of sample treatment protocols with the subsequent nucleic acid amplification and detection techniques. The principles and approaches discussed in this review are applicable to molecular detection of other microbial pathogens.

2.
ACS Meas Sci Au ; 2(3): 224-232, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2242810

RESUMEN

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 µL of gargle or saliva sample and 9-111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 µL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

3.
J Environ Sci (China) ; 130: 139-148, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-2180487

RESUMEN

Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×102 to 2.9×106 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.


Asunto(s)
COVID-19 , ARN Viral , Humanos , Aguas Residuales , SARS-CoV-2/genética , Monitoreo Epidemiológico Basado en Aguas Residuales
4.
Journal of environmental sciences (China) ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2058070

RESUMEN

Image, graphical

5.
ACS measurement science Au ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1688311

RESUMEN

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 μL of gargle or saliva sample and 9–111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 μL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA